

CTにおいて線量評価は重要である.一般のX線撮影 と比較した場合,CTではX線の照射方法,画像作成方 法が異なる.これにより,線量評価を行う場合,特有 の考え方が必要となる.また,実際の臨床では,患者 被曝の形態も異なってくる.しばしば,一般撮影と CTではどちらの被曝が多いか?という質問がある. これもスライスの位置,スライスの角度,そしてスキ ャン範囲によって大きく変化する.これらの問題を解 決することが重要ではあるが,現状ではすっきりした 結果は出ていない.本章では,CTにおける線量評価 の現状と問題点について述べる.

CTの線量評価は,検査に伴う患者被曝の評価のためと装置の性能評価・管理のための二つの立場について行われるべきである.ここでは,後者の装置の性能評価・管理のための線量評価について述べる.

1.一般撮影の線量分布とCTの線量分布

当然のことであるが,一般撮影とCTでは画像の取 得方法が異なる.一般撮影は透過X線を画像化したも のであり,固定されたX線管からX線が照射され,人 体を透過した後に増感紙-フィルム系に達する.一般 撮影では線束は錐形であり,その照射野はある面積を 持つ.CTは目的断層に周囲からX線を照射し,その投 影データから目的断層を再構成し,画像化したもので ある.このように,CTではX線管は被写体の周囲を回 転する.また,X線の線束は数ミリの厚さを持った扇 状(ファンビーム)である.また,へリカルスキャンで はX線管は被写体の周囲をらせん軌道で移動するた め,線量分布は複雑なものとなることが予想される. Fig.1に一般撮影とCTの線量分布の様子を簡単に示 す.

このような状況で,従来の一般撮影と同様の考え 方・測定法でCTの線量評価を行うことは困難なもの となる.そこで,CTでは後述するCTDI(computed tomography dose index)という考え方が考案された. CTDIによりCTという枠の中では線量評価・比較が行 えるようになった.ただし,一般撮影とCTとを比較

Fig. 1 一般撮影とCTの線量分布の様子 左:一般撮影 右:CT 一般撮影ではX線管は固定されているが,CTではX線 管が被写体の周囲を回転する.また,一般撮影は錐状 の線束であるが,CTでは扇状の線束である.

しようとすると問題があるのも事実である.

2 . CT における線量評価法

2-1 単一スライスの評価

シングルスキャンあるいは単一のスライス画像にお ける吸収線量を測定する指標としてCTDIがある.測 定は直径320mm,または直径160mmのアクリル樹脂 の円柱にペンシル型電離箱を挿入して行われる.その 数式は以下のようになる.

これはFig. 2(a)のような線量プロフィール(dose profile)の積分値を求めようというものである.nは同 一照射から発生するスライス数,Tはスライス厚である.Fig. 2(a)でもわかるとおり,CTDIでは,スライ ス厚よりも外側(体軸方向であり,頭側および足側)の 斜線の部分も評価しなければならない.理想値では z1=- ,z2=+ であるが,無限長の長さのペンシル型 電離箱はないわけで,その範囲をどうするかが問題で

Lage 1

ある.実際には長さ10cmのペンシル型電離 箱が使用される.

米国のFDA(food and drug administration) では線量プロフィールの積分区間が長さでは なく,147(頭側に7T,足側に7T)とされてい る.そのため,10cmの電離箱を使用した場 合,7mmのスライス厚しか適応とはならない (Fig. 2(b)).10cmの電離箱で10mmのスライ ス厚を評価する場合,Fig. 2(c)のように積分 区間が107(頭側に5T,足側に5T)となってし まうのである.

10mmの電離箱で7mm以外のスライス厚を 測定してFDAのCTDIを導くためにはTable 1 のようなTableが用いられる.

2-2 複数スライスの評価

CTDIは単一のスライスにおける線量評価 の指標であった.では,通常のCT検査のよ うに,あるスキャン範囲での平均線量を求め たい場合はどうするか.Fig.3のごとく,目 的のスライスの次のスライスでは,となりの スライスの裾の部分,そして,そのまたとな りの裾の部分が加算され,単一スライスより 高い線量を示す.その測定指標にはMSAD (multiple scan average dose)が用いられる.

D_{N.(z})は体軸方向に一定間隔 *I* だけ離れた*N* 回のスキャンにおける多数回スキャン時の線量プロフ ィールであり, MSADは*N*回のスキャンの平均線量で ある.*N*が7回のとき, MSADとCTDIは等しくなる.

ヘリカルスキャンではスキャン間隔ではなく,ヘリ カルピッチでスキャン範囲が決定される.ヘリカルス キャン時のMSADをMSADhelicalとしたとき, MSADhelicalは以下の式で表される.

$$MSAD_{helical} = \frac{CTDI}{Pitch}$$
 mGy(3)

ただし, ノンヘリカルとヘリカルスキャンを比べたと き, スキャンの開始から終了までを考えれば特徴的な 差が現れる. ノンヘリカルスキャンの場合, 通常, 1回 転のスキャンといっても, データ収集と同時にX線が照 射されるのではなく, データ収集より若干早い時期か らX線が照射され, データ収集に若干遅れて照射が終わ る. これは, 体動補正などを行うためのデータが必要 であるからであり, オーバスキャンと呼ばれる. ノン ヘリカルスキャンではスキャンごとにこのオーバスキ

a Jacking,

ャンが存在する.ヘリカルスキャンでは1回のヘリカ ルスキャンの始めと終わりにのみオーバスキャンが存 在し,ノンヘリカルスキャンより低い線量となる.

3.線量プロフィール(dose profile)の測定

これまで線量プロフィールを用いてCTDIやMSAD を説明してきた.では、CTDIやMSADで線量プロフ ィールが求められるか.答えはノーである.CTDIや MSADは数値としての指標であり,線量プロフィール は求められない.これは、測定器がペンシル型電離箱 で長いためであり、線量プロフィールを求めるために はピンポイントの測定が可能なものが必要となる.実 際には、TLDやフィルムが用いられる.TLDはフィル ムに比べ若干大きくなるが、感度のエネルギー依存、 絶対値の再現性の面で優れている.装置の性能評価の 面からも、線量プロフィールの測定法の進歩が望まれ る.

Table 1 FDA規定のCTDIと10cmのペンシル型電離箱を用いたCTDIとの線量比 10cmのペンシル型電離箱であっても,FDA規定のCTDIに変換することができ

Ratio CTDI-FDA/CTDI-10cm Chamber						
Slice(mm)	Head Phantom			Body Phantom		
	Center	表面から1 cm深部	表面	Center 表面から1 cm深部 表面		
10mm	1.1	1.05	1.04	1.16 1.05 1.04		
5mm	0.87	0.93	0.95	0.81 0.93 0.93		
3mm	0.7	0.84	0.86	0.6 0.84 0.85		
2mm	0.55	0.75	0.8	0.43 0.76 0.8		
1.5mm	0.51	0.71	0.75	0.39 0.69 0.76		
1.0mm	0.36	-	-	0.29 – –		

(MDA Report: Type testing of CT Scanners-Methods and Methodology,より抜粋)

4.CTにおける画質と線量の関係

CTでは線量と画質は密接な関係にある.線量を増 せば検出器に到達するフォトン数は増加し,画像ノイ ズは低下する.画像ノイズが低下すれば,表示される ウィンドウ幅を狭くしても輝度ノイズは劣化せず,結 果的にコントラストが向上する.逆に,線量を低減さ せれば,画像ノイズが増大し,コントラストは劣化す る.これは,ディジタル画像診断装置特有の現象であ り,安易な画質向上のために線量を増加させてしまう 危険性を示している.臨床では,診断目的に適合した 画質の維持,線量の管理が必要となる.

る.

CT検査ではスライス厚の選択も重要な要素となる.精密CT検査では部分体積効果の低減のため,薄 いスライス厚が選択される.その結果,検出器に到達 するフォトン数は激減する.それで画像ノイズを維持 しようとすれば,大電流が必要となり線量も増大する のである.スクリーニングの場合,厚いスライス厚を 選択すれば,線量の増大も抑えることができる.

5. **マルチスライス**CTでは?

マルチスライスCTでは検出器が体軸方向で多列に 配置されている.その場合,問題となるのが検出器の 隔壁(セパレータ)の厚さと検出器外へのX線照射である.

マルチスライスCTにおいて,検出器の隔壁の部分 は折角の透過X線を電気信号に変換できず,不要な被 曝となる.ビームトリマを用い,隔壁をなくしたタイ プの装置もあるが,8列,16列となるとその手も使え ない.実際には隔壁を薄くすることが被曝低減につな がる.

マルチスライスCTでは検出器列が分割されている ため,選択されている検出器列の外側へのX線照射は 画質に反映しない線量である.Fig.4に検出器外への X線照射の様子を示す.通常のシングルスライスCTで

Fig. 3 複数スライスにおけるMSAD評価(文献2より引用) 複数のスライスでは単一の線量プロフィールが積分さ れることになる.

はX線ビームの幅より検出器の幅のほうが広く,検出 器外への線量は存在しなかった.しかし,この場合, SSP(slice sensitivity profile at z-axis)は裾が広がり, 空間分解能は劣化する.シングルスライスCTでビー ムトリマを用いた場合,良好なSSPzが得られ,空間分 解能も向上するが,1スライスの両側に検出器外への X線が存在する.マルチスライスCTの場合も隔壁のお かげで,良好なSSPzが得られ,空間分解能も向上す る.ただし,一組(4列,8列,16列)の検出器の外側 に検出器外X線が存在し,列数が増えるほど,検査全 体では検出器外X線が少なくなる.検出器の列数が増 すことによりコーン角は増大し,半影の問題から検出 器外X線が大きくなる傾向もある.

6.撮影条件自動調節機構(auto exposure control)

マルチスライスCTの登場により,肺尖から腹部, 頸部から頭頂と広範囲のスキャンが一度に行えるよう になった.これは,造影効果の有効利用,検査の高速

化などで有利ではあるが,被写体の形状,大きさが1 回のスキャンのあいだに変化することになる.肺尖か ら腹部の場合,肺野は吸収が少なく,大線量を必要と しない.しかし,腹部ではスライス位置の吸収が大き く,少ない線量では画像ノイズが増大してしまう.従 来は1回のヘリカルスキャンでは出力されるX線の強 度は一定であった.これをスキャン中にコントロール するのが撮影条件自動調節機構 auto exposure control) である.Fig.5に撮影条件自動調節の例を示す.線量 の調整は管電流で行う.吸収の小さな部位では管電流 を小さく,吸収の大きな部位では管電流を大きくす る.スライス位置の吸収の程度はスキャノグラフィの データを用いて行われる.この技術により,吸収の変 化する部位であっても同一の画像ノイズとなり,結果 的に20%から40%の線量低減が可能となった.

撮影条件自動調節機構の効果としてウィンドウ設定 がある.管電流の調整により,スライス位置によらず 画像ノイズが一定となった結果,ウィンドウ幅の設定 を頻繁に変化させる必要がなくなった.

7. CT検査における被曝

CTの線量評価は装置の機構やスキャン条件によっ て特徴的な要素が多い.X線撮影やX線透視と単純に は比較できない面もある.しかし,やっぱりCTの被 曝は多いというのが現状である.ただし,CTによる 検査を行わなければわからない症例も多い.CT検査 に従事するものとしては、CTスキャンによる線量を 熟知して,検査の目的,検査内容にあった最適なスキ ャンを実行するのが肝要であろう.スキャン方法にし ても,ガントリのチルトにより水晶体への被曝を最小 限にして,頭部の検査を行うなどの気遣いも重要であ る.装置面でも前述の撮影条件自動調節機構のほか, 低エネルギーX線除去フィルタ,ダイナミック・ビー ム・コリメータなどが開発されている.CT装置の高 画質化と同時に,被曝の低減にも努力すべきである.

次回は X線CT検査の実際(1)」

参考文献 -

- 1) 辻岡勝美: CT自由自在.メジカルビュー社,(2001).
- 2)山下康行(編著):極めるマルチスライスCT.中外医学社, (2001).
- 3) 村松禎久,花井耕造,勝田昭一,他:螺旋状スキャンCTに おける線量指標(HTDI: helical scanning computed tomography dose index)の新しい概念と測定.日放技誌,53

(11), 1657-1664, (1997).

- 4) 速水昭雄,伊藤博美,岡本日出夫,他:X線CT装置性能評価に関する基準(案),日放技学誌,47(1),56-63,(1991).
- 5)花井耕造,石田智広,井田義宏,他:ラセンCTの物理的な 画像特性の評価と測定法に関する報告,日放技学誌,53 (11),1714-1732,(1997).